
Founding Members

	

		

	

	 	

	

Experimental	ontology	

modules	formalising	

concept	definition	of	ATM	

data	
	

Deliverable	1.1	

	 BEST	

	 Grant:		 699298	

	 Call:	 H2020-SESAR-2015-1	

	
Topic:	

Sesar-03-2015	

Information	Management	in	ATM	

	 Consortium	coordinator:		 SINTEF	

	 Dissemination	Level:	 PU	

	 Edition	date:		 31	May	2017	

	 Edition:		 01.03.00	Final	Version	

EXPLORATORY	RESEARCH	

EDITION	[01.03.00]	
	

2	
	

©	2016–	BEST	Consortium		
All	rights	reserved.	Licensed	to	the	SESAR	Joint	Undertaking	under	conditions	

	

	
	

Founding Members

Authoring	&	Approval	

Authors	of	the	document	

Name/Beneficiary	 Position/Title	 Date	

Audun	Vennesland	(SINTEF)	 Project	Member	 31.05.2017	

Bernd	Neumayr	(LINZ)	 Project	Member	 30.05.2017	

Christoph	Schuetz	(LINZ)	 Project	Member	 30.05.2017	

Alex	Savulov	(FRQ)	 Project	Member	 22.07.2016	
	

Reviewers	internal	to	the	project	

Name/Beneficiary	 Position/Title	 Date	

Scott	Wilson	(ECTRL)	 Project	Member	 23.05.2017	

Eduard	Gringinger	(FRQ)	 Project	Member	 17.05.2017	

Bernd	Neumayr	(LINZ)	 Project	Member	 19.05.2017	
	

Approved	for	submission	to	the	SJU	By	—	Representatives	of	beneficiaries	involved	in	the	project	

Name/Beneficiary	 Position/Title	 Date	

Approved	by	consortium	in	
accordance	with	procedures	
defined	in	Project	Handbook.	

Consortium	 31.05.2017	

	 	 	
	

Rejected	By	-	Representatives	of	beneficiaries	involved	in	the	project	

Name/Beneficiary	 Position/Title	 Date	

	 	 	

	 	 	
	

Document	History	

Edition	 Date	 Status	 Author	 Justification	

00.00.01	 10.07.2016	 Document	created	 Audun	Vennesland	 First	draft	

00.00.02	 09.09.2016	 Planned	Content	and	
Structure	proposed	

Audun	Vennesland	 Prepared	document	for	
internal	review	(Planned	
Content	and	Structure)		

00.00.03	 26.09.2016	 Planned	Content	and	
Structure	approved	

Audun	Vennesland	 Addressing	comments	
from	internal	review	
(Planned	Content	and	
Structure)	

D1.1	EXPERIMENTAL	ONTOLOGY	MODULES	FORMALISING	CONCEPT	DEFINITION	OF	
ATM	DATA	

	

	

		

	

	

	

©	2016–	BEST	Consortium		
All	rights	reserved.	Licensed	to	the	SESAR	Joint	Undertaking	under	conditions.	

3	
	

	
	

Founding Members

00.01.01	 24.02.2017	 Intermediate	
proposed	

Audun	Vennesland	 Prepared	document	for	
internal	review	
(intermediate	proposed)	

01.00.00	 16.05.2017	 Final	draft	 				Audun	Vennesland	 Addressing	comments	
from	internal	review	
(intermediate	proposed)	
and	circulated	to	FRQ	and	
LINZ	for	internal	review	

01.01.00	 21.05.2017	 Final	 				Audun	Vennesland	 Addressing	comments	
from	FRQ	and	LINZ	

01.02.00	 30.05.2017	 Final	 				Audun	Vennesland	 Included	input	from	LINZ	

01.03.00	 31.05.2017	 Final	 				Audun	Vennesland	 Final	version	addressing	
comments	from	final	
internal	review		

	 	

EDITION	[01.03.00]	
	

4	
	

©	2016–	BEST	Consortium		
All	rights	reserved.	Licensed	to	the	SESAR	Joint	Undertaking	under	conditions	

	

	
	

Founding Members

BEST	
Achieving	the	BEnefits	of	SWIM	by	making	smart	use	of	Semantic	

Technologies	
This	deliverable	is	part	of	a	project	that	has	received	funding	from	the	SESAR	Joint	Undertaking	under	
grant	 agreement	 No	 699298	 under	 the	 European	 Union’s	 Horizon	 2020	 research	 and	 innovation	
programme.	

Executive	Summary	

This	document	details	the	BEST	ontology	infrastructure	developed	in	task	1.1	of	the	BEST	Project.	The	
ontology	 infrastructure	 includes	 a	 monolithic	 ontology	 developed	 from	 the	 ATM	 Information	
Reference	Model	(AIRM)	UML	model	and	a	set	of	ontology	modules,	each	representing	different	sub-
areas	of	ATM	information	exchange,	namely	Aeronautical	 Information	Exchange	Model	 (AIXM)	and	
ICAO	Meteorological	Information	Exchange	Model	(IWXXM).	All	ontologies	are	formalised	in	the	OWL	
ontology	language.	The	ontologies	will	be	used	as	vocabulary	for	describing	and	supporting	retrieval	
of	 relevant	 aeronautical	 information	 by	 applications	 developed	 in	 other	 work	 packages	 of	 the	
project.	Furthermore,	the	ontologies	form	a	baseline	for	the	establishment	of	guidelines	describing	
how	semantic	technologies	can	be	applied	to	support	information	exchange	in	a	SWIM	environment.		
	
	
	

D1.1	EXPERIMENTAL	ONTOLOGY	MODULES	FORMALISING	CONCEPT	DEFINITION	OF	
ATM	DATA	

	

	

		

	

	

	

©	2016–	BEST	Consortium		
All	rights	reserved.	Licensed	to	the	SESAR	Joint	Undertaking	under	conditions.	

5	
	

	
	

Founding Members

Table	of	Contents	
	

Executive	Summary	...	4	

1	 Introduction:	About	this	document	..	7	
1.1	 Purpose	..	7	
1.2	 Intended	Readership	..	7	
1.3	 Relationship	to	other	deliverables	..	8	
1.4	 Acronyms	and	terminology	..	9	

2	 Background	...	10	
2.1	 Ontologies	..	10	
2.2	 Other	relevant	semantic	technologies	..	11	
2.3	 Ontology	Modularisation	...	12	
2.4	 AIRM	..	13	
2.5	 Exchange	models	for	communication	of	digital	ATM	data	...	14	

2.5.1	 AIXM	5.1	..	14	
2.5.2	 IWXXM	1.1	...	15	
2.5.3	 FIXM	Core	4.0.0	...	16	

2.6	 Transforming	from	UML	to	OWL	...	17	

3	 Development	approach	...	18	
3.1	 Overall	approach	..	18	
3.2	 Transformation	from	UML	to	OWL	...	19	

3.2.1	 XMI	Representation	of	the	AIRM	UML	Model	...	19	
3.2.2	 Transformation	rules	...	20	

4	 The	BEST	Ontology	Infrastructure	..	34	
4.1	 Presentation	of	the	Monolithic	Ontology	...	34	

4.1.1	 OWL	Classes	..	34	
4.1.2	 Object	Properties	..	35	
4.1.3	 Data	Properties	..	36	
4.1.4	 Individuals	...	36	

4.2	 Presentation	of	the	ontology	modules	..	37	
4.2.1	 AIRM	Modules	...	37	
4.2.2	 AIXM	Modules	...	38	
4.2.3	 IWXXM	Modules	..	40	

4.3	 Validation	of	the	ontology	infrastructure	...	42	

5	 Conclusions	and	future	work	..	44	

6	 References	...	45	

EDITION	[01.03.00]	
	

6	
	

©	2016–	BEST	Consortium		
All	rights	reserved.	Licensed	to	the	SESAR	Joint	Undertaking	under	conditions	

	

	
	

Founding Members

APPENDIX	A:		OMG	Mapping	Guidelines	...	47	

APPENDIX	B:		Post-processing	of	XMI	...	48	

D1.1	EXPERIMENTAL	ONTOLOGY	MODULES	FORMALISING	CONCEPT	DEFINITION	OF	
ATM	DATA	

	

	

		

	

	

	

©	2016–	BEST	Consortium		
All	rights	reserved.	Licensed	to	the	SESAR	Joint	Undertaking	under	conditions.	

7	
	

	
	

Founding Members

1 Introduction:	About	this	document
1
	

1.1 Purpose	
This	document	details	 the	BEST	ontological	 infrastructure.	The	ontology	 infrastructure	consists	of	a	
monolithic	ontology	developed	using	the	AIRM	(ATM	Information	Reference	Model),	as	well	as	a	set	
of	 ontology	 modules	 extracted	 from	 the	 ATM	 Information	 Reference	Model	 (AIRM),	 Aeronautical	
Information	 Exchange	 Model	 (AIXM)	 and	 ICAO	 Meteorological	 Information	 Exchange	 Model	
(IWXXM).	We	have	developed	both	a	monolithic	ontology	and	ontology	modules	in	order	to	have	a	
varied	ontology	infrastructure	that	other	tasks	in	the	project	can	benefit	from.	For	example,	an	AIRM	
Compliance	 Validator	 will	 be	 developed	 in	 work	 package	 1	 that	 will	 help	 identify	 semantic	
discrepancies	 between	 AIRM,	 here	 represented	 by	 the	 monolithic	 ontology,	 and	 the	 ontology	
modules	 representing	 various	 sub-topics	 of	 the	 previously	 mentioned	 exchange	 models.	
Furthermore,	 work	 package	 5	 will	 establish	 a	 set	 of	 guidelines	 on	 scalability	 characteristics	 when	
applying	 semantic	 technologies	 in	 ATM	 information	 exchange	 and	 our	 assumption	 is	 that	 using	
monolithic	 ontologies	 compared	 to	 using	 ontology	modules	will	 impact	 on	 scalability	metrics.	 The	
ontologies	have	been	syntactically	transformed	from	their	respective	UML	models	and	as	such	they	
should	 be	 considered	 lightweight	 ontologies,	 without	 logical	 class	 constructors	 facilitating	 the	
expression	 of	more	 complex	 knowledge.	 The	 ontologies	 described	 in	 this	 deliverable	will	 be	 used,	
and	 if	 needed,	 semantically	 enriched,	 by	 other	 technical	 developments	 in	 the	 project.	 These	
developments	 include	 techniques	 for	 supporting	 information	 retrieval	 and	 data	 distribution	
strategies	in	work	package	2;	and	prototype	applications	demonstrating	how	semantic	technologies	
can	 be	 applied	 in	 a	 SWIM	 environment	 in	work	 package	 3.	 Furthermore,	 experiences	 gathered	 in	
developing	 the	 ontologies	 as	 well	 as	 when	 applying	 them	 in	 applications	 will	 help	 formulate	
guidelines	describing	how	ontologies	can	be	employed	to	support	ATM	information	exchange.		
	

1.2 Intended	Readership	
This	document	is	primarily	targeted	towards	people	having	an	interest	in:	

• ATM	information	exchange	
• Application	of	semantic	technologies	in	ATM	
• System-wide	Information	Management	(SWIM)	

	

																																																													

	

1	The	opinions	expressed	herein	reflect	the	author’s	view	only.	Under	no	circumstances	shall	the	SESAR	Joint	Undertaking	
be	responsible	for	any	use	that	may	be	made	of	the	information	contained	herein.	

EDITION	[01.03.00]	
	

8	
	

©	2016–	BEST	Consortium		
All	rights	reserved.	Licensed	to	the	SESAR	Joint	Undertaking	under	conditions	

	

	
	

Founding Members

1.3 Relationship	to	other	deliverables	
Table	1.	Relationship	to	other	deliverables	

Deliverable	 Relationship	

D1.2	AIRM	Compliance	Validator	 The	 compliance	 validator	 prototype	 application	
will,	 using	 techniques	 from	 ontology	 matching	
and	 schema	 matching,	 contribute	 to	 detecting	
semantic	 differences	 between	 the	 monolithic	
ontology	 and	 the	 ontology	 modules.	 This	 can	
assist	 in	 monitoring	 of	 compliance	 between	 a	
reference	 ontology,	 here	 represented	 by	 the	
AIRM	 ontology	 and	 ontology	 modules	
(represented	by	 the	AIXM	and	 IWXXM	ontology	
modules).						

D2.1	 Techniques	 for	 ontology-based	 data	
description	 and	 discovery	 in	 a	 decentralized	
SWIM	knowledge	base	

The	 techniques	 described	 in	 D2.1	 uses	 the	
ontologies	 described	 in	 D1.1	 for	 describing	
aeronautical	 data	 products,	 supporting	 the	
formulation	 of	 information	 need,	 and	
aeronautical	data	discovery	and	retrieval.			

D2.2	 Ontology-based	 techniques	 for	 data	
distribution	 and	 consistency	 management	 in	 a	
SWIM	environment	

The	 techniques	 described	 in	 D2.2	 will	 use	 the	
ontologies	 from	 D1.1	 (among	 other	 ontologies)	
for	supporting	data	distribution	and	consistency	
management.		

D3.1	Prototype	Use	Case	Scenarios	 The	use	case	scenarios	defined	 in	D3.1	provides	
a	 scope	 for	 both	 the	 AIRM	 ontology	 and	 the	
ontology	modules.		

D3.2	Prototype	SWIM-enabled	applications	 The	prototype	applications	developed	in	relation	
to	 D3.2	 will	 utilise	 the	 ontologies	 developed	 in	
relation	to	D1.1.	

D4.4	Tutorial	for	Software	Developers	 The	 tutorial	 for	 software	 developers	 will	
describe	 how	 semantic	 technologies,	 including	
the	ontologies	developed	in	relation	to	D1.1,	can	
be	 applied	 when	 developing	 applications	 for	
SWIM.		

D5.1	 Scalability	 Guidelines	 for	 Semantic	 SWIM-
based	Applications	

The	 scalability	 analysis	 performed	 in	 relation	 to	
D5.1	 will	 consider	 how	 semantic	 technologies,	
including	 the	 ontologies	 described	 in	 D1.1,	
influence	 on	 the	 scalability	 of	 software	
applications	using	such	technologies.			

D5.2	 Ontology	 Modularisation	 Guidelines	 for	
SWIM	

The	 ontology	 modularisation	 guidelines	 will	
evaluate	 the	 “monolithic”	 ontology	 and	 the	
ontology	modules	developed	 in	relation	to	D1.1	
and	provide	guidelines	on	how	this	could	be	best	
accomplished	in	a	SWIM	operational	setting.			

D1.1	EXPERIMENTAL	ONTOLOGY	MODULES	FORMALISING	CONCEPT	DEFINITION	OF	
ATM	DATA	

	

	

		

	

	

	

©	2016–	BEST	Consortium		
All	rights	reserved.	Licensed	to	the	SESAR	Joint	Undertaking	under	conditions.	

9	
	

	
	

Founding Members

1.4 Acronyms	and	terminology	

Table	2.	Acronyms	and	terminology	

Definition	 Explanation	

AIRM	 ATM	Information	Reference	Model	

AIXM	 Aeronautical	Information	Exchange	Model	

FIXM	 Flight	Information	Exchange	Model	

F-Logic	 Frame	Logic	

IWXXM	 ICAO	 Meteorological	 Information	 Exchange	
Model	

METAR	 Meteorological	Aerodrome	Report	

ODM	 Ontology	Definition	Metamodel	

OMG	 Object	Management	Group	

OWL	 Web	Ontology	Language	

RDF	 Resource	Description	Framework	

RDFS	 RDF	Schema	

SESAR	 Single	European	Sky	ATM	Research	

SPARQL	 SPARQL	Protocol	and	RDF	Query	Language	

SWIM	 System-wide	Information	Management	

TAF	 Terminal	Aerodrome	Forecast	

UML	 Unified	Modelling	Language	

W3C	 World	Wide	Web	Consortium	

XMI	 XML	Metadata	Interchange	

XSLT	 EXtensible	Stylesheet	Language	

	

EDITION	[01.03.00]	
	

10	
	

©	2016–	BEST	Consortium		
All	rights	reserved.	Licensed	to	the	SESAR	Joint	Undertaking	under	conditions	

	

	
	

Founding Members

2 Background	
This	 section	 describes	 some	 of	 the	 background	 knowledge	 relevant	 for	 the	 development	 of	 the	
ontology	infrastructure	in	BEST.	The	ontology	infrastructure	consists	of	a	monolithic	ontology	and	a	
set	 of	 ontology	modules.	A	monolithic	 ontology	 is	 typically	 characterised	 as	 an	ontology	where	 all	
knowledge	 used	 for	 describing	 a	 complete	 domain,	 possibly	 encompassing	 several	 knowledge	
domains,	 is	 contained	 within	 a	 single	 model.	 There	 are	 normally	 no	 external	 references	 to	 other	
ontologies.	 In	 contrast,	 ontology	 modules	 are	 defined	 as	 self-contained,	 but	 coherent	 knowledge	
models,	 each	 responsible	 for	describing	a	 single,	narrower	knowledge	domain,	 and	 typically	 taking	
part	in	a	network	of	interdependent	modules	in	order	to	represent	a	larger	knowledge	domain.		
	

2.1 Ontologies	
	“An	 ontology	 describes	 a	 hierarchy	 of	 concepts	 related	 by	 subsumption	 relationships	 (a.k.a.	
specialization	 or	 is-a	 relationships),	 where	 suitable	 rules	 or	 statements	 (a.k.a.	 axioms)	 express	
other	 relationships	 between	 concepts	 and	 to	 constrain	 their	 intended	 interpretation.	 Following	
from	 this,	 an	 ontology	 O	 is	 defined	 as	 a	 tuple	 áC,	 HC,	 RC,	 HR,	 I,	 RI,	 iC,	 iR,	 Añ	 where	 ontology	
concepts	 C	 are	 arranged	 in	 a	 subsumption	 hierarchy	 HC.	 Relations	 RC	 exist	 between	 pairs	 of	
concepts.	 The	 relations	 themselves	 can	 also	 be	 arranged	 in	 a	 hierarchy	 HR.	 Instance	 data	 is	
constituted	 by	 individuals	 I	 of	 specific	 concepts,	 and	 these	 individuals	 are	 interconnected	 by	
relational	 instances	 RI.	 Individuals	 and	 relational	 individuals	 are	 connected	 to	 concepts	 and	
relations	by	instantiations	iC	and	iR	respectively.	A	represents	a	set	of	axioms	that	can	be	used	to	
further	 express	 constraints	 and	 induce	 logic	 from	 the	 ontology	 structure	 and	 associated	
instances”	[1].		

	
OWL	(Web	Ontology	Language)	[2]	is	a	popular	ontology	language,	and	is	the	main	formalism	we	use	
for	the	ontologies	developed	in	the	BEST	project.	As	a	very	short	introduction	to	later	sections	in	this	
report,	 the	main	building	blocks	of	OWL	are	entities	and	axioms.	Entities	are	represented	as	either	
classes,	 object	 properties,	 data	 properties	 or	 individuals	 and	 they	 are	 all	 identified	 using	 IRIs	
(Internationalized	 Resource	 Identifiers).	 Classes	 are	 lightweight	 objects	 that	 in	 themselves	 do	 not	
hold	information	about	definitions	that	may	apply	to	themselves;	this	information	is	taken	care	of	by	
the	 ontology	 object	 through	 axioms	 relating	 to	 the	 class	 level.	 Object	 properties	 are	 binary	
associations	 between	 individuals	 (real	 instances),	 and	 compared	 to	 UML	 associations	 OWL	 object	
properties	 can	have	additional	 characteristics	 (e.g.	 that	 an	object	property	expression	 is	 transitive,	
inverse,	 ir-/reflexive,	 a-/symmetric,	 and	 so	on).	 	Data	 properties	 relate	 an	 individual	 to	 a	 concrete	
data	value	(for	example	a	value	of	type	xsd:string).	As	with	classes,	both	object	properties	and	data	
properties	can	be	organised	hierarchically.	Axioms	 represent	 facts	explicitly	 stated	 in	 the	ontology,	
and	there	are	several	different	categories	of	axioms.	Declaration	axioms	declare	the	content	(i.e.	the	
entities)	within	the	ontology.	Logical	axioms	express	logical	assertions,	such	as	specialisation	(super-
sub	 class)	 hierarchies,	 that	 two	 entities	 in	 an	 (or	 several)	 ontologies	 are	 equivalent,	 and	 property	
characteristics	(e.g.	that	a	property	is	transitive),	among	others.	Annotation	axioms	merely	associate	
information	to	entities,	and	do	not	affect	the	semantics	of	the	ontology.		
	
In	BEST	we	will	use	ontologies	in	combination	with	semantic	reasoning	for	supporting	retrieval	and	
filtering	of	ATM	information.	This	reasoning	consists	of	subsumption	reasoning	(i.e.	discovering	the	

D1.1	EXPERIMENTAL	ONTOLOGY	MODULES	FORMALISING	CONCEPT	DEFINITION	OF	
ATM	DATA	

	

	

		

	

	

	

©	2016–	BEST	Consortium		
All	rights	reserved.	Licensed	to	the	SESAR	Joint	Undertaking	under	conditions.	

11	
	

	
	

Founding Members

most	specific	yet	relevant	set	of	instance	data	through	utilising	the	specialisation	hierarchy	expressed	
in	ontologies)	and	membership	reasoning	 (determining	 if	an	 individual	belongs	to	a	particular	class	
through	 inference).	 A	 research	 paper	 written	 as	 part	 of	 the	 BEST	 project	 describes	 in	 a	 detailed	
manner	how	ontologies	are	applied	 in	combination	with	reasoning	for	supporting	ATM	information	
exchange	in	a	SWIM	setting	[3].		
	
There	 are	 a	 number	 of	 different	 tools	 for	 editing	 ontologies.	 For	 manual	 ontology	 engineering,	
inspection	 of	 the	 resulting	 BEST	 ontologies,	 and	 visualising	 extracts	 of	 the	 BEST	 ontology	
infrastructure	later	in	this	report,	we	have	used	the	Protégé	ontology	editor	[4]	which	is	a	free,	open	
source	ontology	editor	for	OWL.	
	
It	 is	 important	 to	emphasise	 that	 the	BEST	ontologies	described	 in	 this	 report	aim	 to	preserve	 the	
semantics	expressed	 in	 the	 source	UML	models.	 For	example,	 they	do	not	 include	more	advanced	
concepts	 such	 as	 complex	 classes	 (for	 example	 expressing	 intersection	 of	 classes),	 additional	
property	 characteristics	 (e.g.	 symmetric	 properties),	 and	 more	 advanced	 use	 of	 data	 types	 (e.g.	
facets).	 During	 the	 implementation	 of	 the	 more	 advanced	 techniques	 in	 WP	 2	 and	 prototype	
applications	 in	WP	3,	we	may	however	 see	 the	need	 for	 incorporating	more	advanced	expressions	
that	 enrich	 the	 semantics	 of	 the	 ontologies	 as	well	 as	 introduce	 other	 semantic	 technologies	 that	
complement	OWL.	A	short	inventory	of	other	relevant	semantic	technologies	is	presented	in	the	next	
section.		
	

2.2 Other	relevant	semantic	technologies	

The	 choice	 of	 semantic	 web	 technology	 depends	 on	 the	 reasoning	 task	 at	 hand	 and	 the	 type	 of	
represented	 information.	 In	 the	 semantic	 container	 approach,	 developed	 in	 WP	 2	 [5],	 one	 must	
decide	 whether	 a	 given	 semantic	 container	 contains	 more	 specific	 information	 than	 the	 other	
(subsumption	reasoning)	and	whether	individual	data	items	belong	to	a	specific	semantic	container	
(membership	 reasoning).	 The	 general-purpose	 language	 OWL	 allows	 to	 declaratively	 describe	 a	
broad	range	of	knowledge	while	remaining	decidable.	Yet,	for	the	representation	of	certain	types	of	
information,	e.g.,	geospatial	 information,	OWL	is	 less	suited.	Thus,	for	certain	types	of	 information,	
more	specialized	ontology	languages	and	domain-specific	extension	are	preferable.	GeoSPARQL	[6],	
for	example,	provides	representational	concepts	and	query	facilities	for	geospatial	information	in	the	
semantic	web.	For	other	 types	of	 information,	e.g.,	provenance,	a	simpler	 language	such	as	RDF(S)	
[7]	is	sufficient,	along	with	the	corresponding	query	language	–	SPARQL	[8].	Frame	Logic	(F-Logic)	[9],	
on	 the	other	hand,	 is	 an	ontology	 language	 similar	 to	Datalog	 [10]	 in	deductive	database	 systems.	
The	 advantage	 of	 F-Logic	 is	 its	 concise	 object-oriented	 syntax	 as	 well	 as	 its	 rule-based	 reasoning	
capabilities	which	allow	for	the	representation	of	information	not	expressible	in	OWL.	The	developed	
rules,	however,	must	then	be	maintained.	
	
For	realizing	the	semantic	container	approach	developed	in	WP	2,	a	viable	technology	choice	seems	
to	 employ	 a	mixture	 of	OWL,	 RDF(S),	 SPARQL,	GeoSPARQL,	 and	 F-Logic,	whereby	 each	 technology	
serves	 a	 different	 purpose	 [5].	 OWL	 could	 serve	 for	 the	 representation	 of	 base	 vocabulary	 and	
semantic	description	of	container	contents,	and	an	OWL	reasoner	takes	care	of	semantic	container	
discovery.	 GeoSPARQL	 seems	 to	 be	 a	 viable	 alternative	 for	 the	 representation	 and	 querying	 of	
geospatial	 data,	 which	 also	 integrates	 well	 into	 OWL	 and	 RDF(S).	 RDF(S)	 could	 serve	 for	 the	

EDITION	[01.03.00]	
	

12	
	

©	2016–	BEST	Consortium		
All	rights	reserved.	Licensed	to	the	SESAR	Joint	Undertaking	under	conditions	

	

	
	

Founding Members

representation	of	provenance	information	and	other	administrative	metadata;	SPARQL	queries	allow	
for	a	further	restriction	of	discovered	semantic	containers	based	on	the	administrative	metadata.	F-
Logic	 could	 serve	 for	membership	 reasoning,	 i.e.,	 actually	populating	 the	 semantic	 containers	with	
data	items.	
	

2.3 Ontology	Modularisation	

We	distinguish	between	monolithic	ontologies,	which	are	typically	characterised	as	ontologies	large	
in	 size	 and	 complexity,	 and	 often	 spanning	 several	 different	 topics	 and	 knowledge	 areas,	 and	
ontology	modules,	which	aim	at	providing	ontology	users	with	the	knowledge	they	require,	reducing	
the	scope	as	much	as	possible	 to	what	 is	strictly	necessary	 [11].	As	mentioned	earlier,	an	ontology	
consists	of	a	set	of	axioms,	i.e.	logical	statements,	that	holds	some	knowledge.	An	ontology	module	
represents	a	particular	subset	of	these	axioms,	and	encapsulates	a	subset	of	the	axioms	compared	to	
the	 “monolithic”	 ontology.	 For	 example,	 if	 we	 are	 interested	 in	 only	 the	 knowledge	 about	 the	
concept	 Aircraft	 in	 AIRM,	we	 can	 represent	 this	 knowledge	 in	 an	 Aircraft	 ontology	module,	 while	
disregarding	other	axioms	 from	the	AIRM	ontology	 that	are	not	 relevant	 for	expressing	knowledge	
about	an	Aircraft.		
	

There	are	a	number	of	good	incentives	for	operating	with	ontology	modules	rather	than	monolithic	
representations	 of	 ontologies.	Ontology	modules	 intuitively	 promote	 reuse,	 simpler	 maintenance,	
enable	distributed	engineering	over	different	geographical	locations	and	different	areas	of	expertise,	
enable	effective	management	and	navigability,	and	will	(in	most	cases)	result	in	faster	processing	of	
reasoning	operations.	There	are	however	several	challenges	related	to	modularisation	too.	One	thing	
is	 finding	 the	 appropriate	 size	 of	 the	modules.	 If	 they	 become	 too	 large,	many	 of	 the	 issues	with	
monolithic	ontologies	still	remain.	If	they	become	too	small,	there	might	be	too	many	modules	in	the	
network	 to	 manage,	 and	 maintaining	 an	 overview	 and	 keeping	 the	 ontology	 module	 network	
consistent	can	become	challenging.	There	are	also	challenges	related	to	defining	the	boundaries	of	
the	modules,	and	especially	 if	 the	starting	point	 is	an	already	developed	ontology	that	needs	to	be	
partitioned	 and	potentially	 a	 large	 number	 of	 interdependencies	 between	 entities	 across	 different	
themes.	Deciding	on	criteria	for	size	and	thematic	boundaries	depends	on	each	particular	use	case.	
Once	these	criteria	are	settled,	there	are	a	number	of	different	modularisation	techniques	to	choose	
from.	 We	 briefly	 discuss	 two	 of	 them,	 ontology	 partitioning	 and	 ontology	 extraction.	 Ontology	
partitioning	consists	of	decomposing	the	full	set	of	axioms	in	an	ontology	into	a	set	of	modules	and	
the	 union	 of	 all	modules	 is	 equivalent	 to	 the	 original	 ontology.	 For	 example,	 Stuckenschmidt	 and	
Schlicht	[12]	applied	structural	characteristics	of	the	ontology	to	determine	suitable	partitions	of	an	
input	ontology.	Representing	the	ontology	as	a	weighted	graph	the	technique	computed	the	strength	
of	 the	 dependency	 between	 the	 different	 entities	 by	 analysing	 the	 ontology	 structure.	 Module	
extraction	extracts	modules	from	an	ontology	based	on	a	definition	of	a	sub-vocabulary	or	also	called	
a	 seed	 signature.	 This	 signature	 consists	 of	 a	 set	 of	 entities	 (classes	 and/or	 properties	 and/or	
individuals)	 from	which	 the	 technique	 recursively	 traverses	 through	 the	ontology	 to	gather	 related	
entities	 to	 be	 included	 in	 the	module	 [13].	 As	 a	 part	 of	 developing	 ontology	modules	 in	 BEST,	we	
partly	use	the	latter	approach.		
	

D1.1	EXPERIMENTAL	ONTOLOGY	MODULES	FORMALISING	CONCEPT	DEFINITION	OF	
ATM	DATA	

	

	

		

	

	

	

©	2016–	BEST	Consortium		
All	rights	reserved.	Licensed	to	the	SESAR	Joint	Undertaking	under	conditions.	

13	
	

	
	

Founding Members

2.4 AIRM		

AIRM	is	a	reference	model	that	addresses	semantic	interoperability	through	harmonised	and	agreed	
definitions	of	the	information	being	exchanged	in	ATM	[14].	Semantic	interoperability	within	ATM	is	
accomplished	by	ensuring	 that	 all	 information	being	exchanged	within	ATM	should	be	 conformant	
with	the	definitions	in	AIRM.	Such	compliance	is	achieved	following	the	rules	of	compliance	defined	
in	the	SESAR	AIRM	Compliance	Framework	[15].	

AIRM	is	formalised	in	UML	and	the	UML	model	is	decomposed	into	two	main	views	having	different	
abstraction	levels:	

• The	Information	Model,	which	defines	information	elements	used	in	European	ATM	and	their	
interrelations.	In	this	view,	the	information	elements	are	defined	as	entities	without	detailing	
their	properties.		

• The	Logical	Data	Model,	which	 refines	 the	content	of	 the	 Information	Model	 to	be	used	 in	
more	 “operational”	 settings	 to	 support	 system	 and	 service	 development.	 In	 this	 view,	 the	
fundamental	 structure	 of	 the	models	 and	 their	 entities	 is	 the	 same	 as	 in	 the	 information	
model,	 but	 each	 entity	 includes	 more	 detail,	 such	 as	 class	 properties	 and	 clearly	 defined	
association	roles.		

Within	 each	 view	 there	 is	 a	 decomposition	 of	 the	model	 into	 different	 subject	 fields,	where	 each	
subject	field	includes	elements	for	particular	areas	of	ATM.	As	an	example	there	is	a	subject	field	for	
information	 elements	 describing	 the	 aircraft,	 another	 subject	 field	 for	 information	 elements	
describing	meteorological	 information,	 etc.	 	 Figure	 1	 shows	 the	 decomposition	 of	 subject	 fields	 in	
AIRM.	

	
Figure	1.	Subject	Fields	of	the	AIRM	Data	Model	

In	 the	 development	 of	 the	 ontological	 infrastructure,	 we	 have	 only	 focused	 on	 the	 Logical	 Data	
Model.	The	reason	for	this	is	that	the	ontologies	require	a	certain	detail	level	in	order	to	be	useful	for	
the	applications	developed	in	work	package	2	and	work	package	3.	This	detail	level	is	accomplished	
by	 transforming	also	 the	properties	and	associations	 in	addition	 to	 the	entities	 (UML	classes)	 from	
the	Logical	Data	Model.	 In	addition	to	the	Subject	Field	packages,	the	transformation	also	needs	to	
include	the	Abstract	package	and	the	Data	Types	package	since	these	contain	properties	and	types	

EDITION	[01.03.00]	
	

14	
	

©	2016–	BEST	Consortium		
All	rights	reserved.	Licensed	to	the	SESAR	Joint	Undertaking	under	conditions	

	

	
	

Founding Members

that	 apply	 to	 all	 elements	 in	 the	 Subject	 Fields.	 From	AIRM	we	have	developed	a	monolithic	OWL	
ontology	(see	chapter	3)	and	in	addition	we	have	modularised	this	monolithic	ontology	into	a	set	of	
ontology	modules	consisting	of:	

• Aircraft	

• BaseInfrastructure	

• Meteorology	

• Common	

• Stakeholders	

	

2.5 Exchange	models	for	communication	of	digital	ATM	data	

While	AIRM	provides	 a	 reference	model	of	 all	 information	 to	be	exchanged	within	ATM	 to	ensure	
semantic	interoperability,	there	are	different	exchange	models	that	define	the	structure	and	content	
and	operationalise	this	for	actual	transmissions	of	digital	ATM	information.	As	mentioned	in	section	
2.4,	 the	 information	 communicated	 must	 be	 compliant	 with	 AIRM	 to	 accomplish	 semantic	
interoperability.	The	exchange	models	may	use	different	terminology,	but	there	has	to	be	a	semantic	
trace	 between	 the	 information	 defined	 by	 these	 exchange	 models	 and	 AIRM,	 and	 semantic	
interoperability	 must	 be	 demonstrated	 following	 the	 rules	 defined	 by	 the	 AIRM	 Compliance	
Framework.	 The	 following	 subsections	 describe	 the	 exchange	 models	 most	 relevant	 to	 the	 BEST	
project.	
	

2.5.1 AIXM	5.1	

AIXM	provides	a	conceptual	data	model	and	associated	XML	schemas	for	representing	the	format	of	
digitally	 communicated	 aeronautical	 information.	 There	 is	 a	 direct	 link	 between	 the	 conceptual	
model	 and	 the	 XML	 schemas	 [16],	 and	 some	 of	 the	 modelling	 conventions	 applied	 represents	 a	
challenge	 for	automated	 transformation	 to	OWL.	The	 requirements	underlying	 the	data	model	are	
defined	 in	 the	 AIX	 (Aeronautical	 Information	 Exchange)	 specification	 from	 Eurocontrol	 [17].	 AIXM	
defines	 information	 related	 to,	 among	 other	 things,	 airports	 and	 heliports,	 airspace	 structures,	
organisations	 (including	 services	 they	 provide),	 geographical	 points	 and	 navigation	 aids,	 route	
information	and	 flying	 restrictions.	The	basic	 information	unit	 is	 a	 feature,	which	 corresponds	 to	a	
real	world	entity	in	the	aeronautical	environment	(see	list	of	packages	in	Figure	2).	The	features	are	
considered	dynamic,	similarly	to	the	environment	they	exist	within.	This	dynamic	is	reflected	by	the	
notion	 of	 time	 slices	 for	 each	 feature	 which	 defines	 how	 a	 feature	 can	 either	 permanently	 or	
temporarily	 change	 in	 time	 [18].	 In	 our	 work	 we	 have	 primarily	 focused	 on	 the	 AirportHeliport	
feature,	 but	 since	 there	 are	 strong	 dependencies	 to	 some	 of	 the	 other	 features	 we	 have	 also	
included	these	into	our	scope.	The	packages	represent	modules	in	our	setting	and	the	list	of	modules	
developed	from	AIXM	are:	

• AirportHeliport	
• Geometry	
• Obstacle	
• Organisation	
• Shared	

D1.1	EXPERIMENTAL	ONTOLOGY	MODULES	FORMALISING	CONCEPT	DEFINITION	OF	
ATM	DATA	

	

	

		

	

	

	

©	2016–	BEST	Consortium		
All	rights	reserved.	Licensed	to	the	SESAR	Joint	Undertaking	under	conditions.	

15	
	

	
	

Founding Members

	

	
Figure	2.	Structure	of	AIXM	Conceptual	UML	Model	 	

	

2.5.2 IWXXM	1.1	

IWXXM	 is	 an	 exchange	 model	 that	 encompasses	 information	 about	 weather	 phenomenon.	 This	
includes	actual	and	forecasted	weather	reports	at	aerodromes	(METAR	and	TAF),	weather	conditions	
along	the	route	(AIRMET),	significant	meteorological	information	(SIGMET),	and	advisories	related	to	
volcanic	ash	events	and	other	extreme	meteorological	conditions	(e.g.	cyclones).	As	with	AIXM,	the	
UML	model	 is	 targeted	 for	 XML	 schema	 development,	 something	 that	 makes	 it	 challenging	 for	 a	
completely	 automated	 transformation	 to	OWL.	 In	 this	work	we	have	only	 focused	on	 three	of	 the	
IWXXM	 models,	 namely	 the	 METAR	 and	 TAF	 reports,	 and	 the	 Common	 package,	 which	 are	 all	
represented	as	ontology	modules.		
	

EDITION	[01.03.00]	
	

16	
	

©	2016–	BEST	Consortium		
All	rights	reserved.	Licensed	to	the	SESAR	Joint	Undertaking	under	conditions	

	

	
	

Founding Members

	
Figure	3.	IWXXM	UML	Model	Structure	

	

2.5.3 FIXM	Core	4.0.0	

The	 Flight	 Information	Exchange	Model	 (FIXM)	 is	 a	 standardised	model	 for	 the	 global	 exchange	of	
flight	 information	 [19].	 The	model	 encompasses	 concepts	 such	 as	 flight	 and	 en	 route	 information,	
Arrival	 and	 Departure	 information,	 and	 basic	 information	 about	 other	 entities	 involved	 in	 a	 flight	
(Aircraft,	Cargo,	Trajectory,	etc.),	see	Figure	3	for	an	overview	of	the	FIXM	UML	model.	As	with	AIXM	
and	 IWXXM,	the	UML	model	of	FIXM	is	 intended	to	be	encoded	to	XML	Schemas.	While	having	an	
OWL	representation	of	FIXM	would	be	very	interesting,	this	is	outside	of	the	defined	scope	of	BEST,	
so	this	model	has	not	been	transformed	to	OWL.		

	
Figure	4.	FIXM	UML	Model	Structure	

	

D1.1	EXPERIMENTAL	ONTOLOGY	MODULES	FORMALISING	CONCEPT	DEFINITION	OF	
ATM	DATA	

	

	

		

	

	

	

©	2016–	BEST	Consortium		
All	rights	reserved.	Licensed	to	the	SESAR	Joint	Undertaking	under	conditions.	

17	
	

	
	

Founding Members

2.6 Transforming	from	UML	to	OWL		

The	overall	approach	used	when	transforming	from	the	source	UML	models	to	OWL	is	illustrated	in	
Figure	5.	

	

Figure	5.	Overall	transformation	process	from	UML	to	OWL	

When	transforming	the	content	of	a	UML	model	to	OWL	in	an	automated	manner	one	needs	to	have	
a	representation	of	 the	UML	constructs	that	allows	for	a	straightforward	parsing	and	processing	of	
them.	Such	representation	is	provided	by	XMI	[20],	a	format	that	represent	UML	constructs	in	XML.	
The	XMI	file	resulting	from	the	generation	from	the	UML	editor	Sparx	Systems	Enterprise	Architect	
[21],	 needed	 some	 minor	 post	 processing.	 This	 post	 processing	 is	 described	 in	 Appendix	 B.	 The	
transformation	 from	 XMI	 to	OWL	 is	 performed	 using	 XSLT.	 	 XSLT	 is	 a	 “rule-based”	 transformation	
scripting	 language	 typically	 used	 for	 transforming	 one	 XML	 representing	 into	 another	 XML	
representation	[22],	although	other	target	representations	are	also	possible	(e.g.	HTML).	As	an	OWL	
ontology	can	be	represented	 in	XML	(RDF-XML	and	OWL-XML),	XSLT	represents	a	viable	option	 for	
our	 purposes.	With	 regard	 to	 the	 rules	 guiding	 the	 transformation,	 OMG,	 a	 technology	 standards	
developing	 organisation	 (responsible	 for	 the	 standardisation	 of	 UML,	 among	 others)	 provides	
guidelines	on	how	to	map	from	UML	to	OWL	[23]	and	these	guidelines	have	helped	formulate	most	
of	 the	 rules	 applied	 in	 our	 transformation	 to	 OWL.	 However,	 we	 have	 extended	 the	 OMG	
specification	with	 a	 few	 additional	 rules.	 These	 rules	 are	 explained	 in	 detail	 in	 section	 3.	Once	 an	
OWL	representation	 is	 in	place,	 some	post-processing	 for	 some	of	 the	OWL	ontologies	 is	 required.	
This	 relates	 to	 ensuring	 a	 good	 representation	 of	 <<choice>>	 constraints	 and	 UML	 association	
classes.	This	post-processing	is	further	described	in	chapter	3.2.2.	

XMI XSLTUML OWL

OMG
Rules

Custom
Rules

Post-
processing

Post-
processing

EDITION	[01.03.00]	
	

18	
	

©	2016–	BEST	Consortium		
All	rights	reserved.	Licensed	to	the	SESAR	Joint	Undertaking	under	conditions	

	

	
	

Founding Members

3 Development	approach	

The	 development	 of	 a	 monolithic	 ontology	 and	 a	 set	 of	 ontology	 modules	 has	 followed	 three	
different	approaches,	primarily	 caused	by	different	 complexity	of	 the	UML	 structures	of	AIRM	and	
the	exchange	models,	as	mentioned	in	the	previous	chapter,	but	also	for	the	sake	of	experimenting	
with	different	techniques.		
	

1. The	monolithic	version	of	the	AIRM	ontology	has	been	transformed	from	UML	automatically	
using	XSLT.		

2. Ontology	 modules	 of	 AIRM	 have	 been	 developed	 by	 taking	 the	 monolithic	 ontology	 as	 a	
starting	point,	and	then	apply	an	automated	modularisation	technique	for	extracting	a	set	of	
modules.		

3. The	 iWWXM	 and	 AIXM	 UML	 exchange	 models	 include	 a	 large	 number	 of	 package	
interdependencies,	 intricate	 data	 typing,	 and	 some	 other	modelling	 conventions	 (e.g.	 XOR	
relationships	 and	 association	 classes)	 that	 makes	 it	 challenging	 to	 completely	 automate	 a	
transformation	 from	 UML	 to	 OWL.	 Therefore,	 the	 development	 of	 the	 ontology	 modules	
from	 IWXXM	and	AIXM	has	been	performed	 semi-automatically	 in	 the	 sense	 that	much	of	
the	laborious	class	and	property	axioms	in	OWL	are	established	automatically	using	XSLT	and	
the	same	set	of	rules	as	for	AIRM.	After	this	we	have	enhanced	and	structured	the	content	
manually	in	an	ontology	editor	Protégé	[4].		

	

3.1 Overall	approach	
The	overall	approach	is	illustrated	in	Figure	6.	Both	the	AIRM	UML	model	and	the	exchange	models	
are	 exported	 to	 XMI	 from	 the	 UML	 editor	 (Sparx	 Systems	 Enterprise	 Architect	 [21])	 in	 the	 same	
manner.	In	the	next	step,	we	ran	the	XSLT	transformation	which	transformed	the	XMI	representation	
of	AIRM	to	a	monolithic	ontology	and	AIXM	and	IWXXM		(see	section	3.2.2).	In	principle,	more	or	less	
the	 same	 transformation	 rules	 are	 applied	 for	 all	 models	 in	 order	 to	 get	 to	 a	 monolithic	 AIRM	
ontology	and	an	intermediate	OWL	representation	for	the	exchange	models,	but	as	mentioned	there	
are	some	differences	 in	modelling	procedures	 that	prevents	a	completely	generic	approach	among	
the	 three.	The	 intermediate	OWL	ontologies	generated	 from	the	XSLT	 transformation	consist	of	all	
most	entities	present	in	the	UML	models,	however	quite	a	bit	of	manual	engineering	is	still	required	
in	order	to	organise	the	proper	relationship	between	classes,	object	properties,	data	properties	and	
individuals,	before	the	ontology	modules	are	complete.		

On	the	left	hand	side	of	Figure	6,	after	the	monolithic	AIRM	ontology	is	generated,	a	seed	signature	
guides	the	extraction	of	AIRM	modules.	The	seed	signature	we	composed	consisted	of	a	subject	field	
name	(e.g.	BaseInfrastructure),	since	the	UML	package	names	for	the	subject	fields	are	transformed	
to	OWL	classes	 in	 the	 resulting	ontology.	 The	module	extraction	 functionality	was	 implemented	 in	
Java	using	the	OWL	API	library	(version	4.1.2)	and	the	theories	behind	it	are	described	in	[24]–[26].	

	

D1.1	EXPERIMENTAL	ONTOLOGY	MODULES	FORMALISING	CONCEPT	DEFINITION	OF	
ATM	DATA	

	

	

		

	

	

	

©	2016–	BEST	Consortium		
All	rights	reserved.	Licensed	to	the	SESAR	Joint	Undertaking	under	conditions.	

19	
	

	
	

Founding Members

	
Figure	6.	Overall	approach	

	

3.2 Transformation	from	UML	to	OWL	

3.2.1 XMI	Representation	of	the	AIRM	UML	Model	

The	UML	models	are	generated	into	separate	XMI	files	which	are	used	as	a	basis	for	generating	the	
OWL	ontology	files.	Figure	7	shows	the	nodes	of	the	XMI	which	are	important	for	the	transformation.	
The	numbers	in	parenthesis	are	used	as	reference	numbers	for	the	explanation	of	the	transformation	
rules	in	the	next	section.		
	

AIRM

AIXM

IWXXM

Export to XMI

Transform XSLT

Monolithic OWL Ontology Intermediate OWL ontologies

Manually engineer ontologies
Define Seed Signature

Extract Modules

Aircraft Base
Infrastructure

Meteorology Stakeholders

Common

AIRM Modules

AirportHeliport Obstacle

Organisation Geometry

Shared

AIXM Modules

METAR

TAF

IWXXM Modules

Common

EDITION	[01.03.00]	
	

20	
	

©	2016–	BEST	Consortium		
All	rights	reserved.	Licensed	to	the	SESAR	Joint	Undertaking	under	conditions	

	

	
	

Founding Members

	
Figure	7.	Structure	of	the	XMI	generated	from	the	AIRM	UML	Model.	

In	 the	 following	 the	 transformation	 rules	 are	 explained.	 These	 rules	 are	 applied	 both	 when	
developing	 the	 monolithic	 ontology	 and	 the	 intermediate	 OWL	 representation	 of	 the	 ontology	
modules.		
	

3.2.2 Transformation	rules	

As	described	in	section	3.1	the	generation	of	the	ontological	infrastructure	was	performed	using	XSLT	
transformation	 from	 UML	 via	 XMI	 to	 OWL.	 The	 transformation	 rules	 are	 developed	 with	 support	
from	 the	 (non-normative)	 guidelines	 for	 mapping	 between	 UML	 and	 OWL	 in	 the	 OMG	 ODM	
specification	 (see	section	2.6	and	Appendix	A).	Each	of	 the	 following	 transformation	 rules	describe	

• XMI (1)

o Documentation (2)

o Extension (3)

! elements (4)

• element (5)

• @xmi:type (6)

• @name (7)

• tags (8)

• tag (9)

• @name (10)

• @value (11)

• extendedProperties (12)

• @package_name (13)

• attributes (14)

• attribute (15)

• @name (16)

• documentation (17)

• @value (18)

• properties (19)

• @type (20)

! connectors (21)

• connector (22)

o source (23)

o model (24)

o @type (25)

o @name (26)

o type (27)

o @aggregation (28)

o target (29)

o model (30)

o @name (31)

o @type (32)

o role (33)

o @name (34)

o properties (35)

o @ea_type (36)

D1.1	EXPERIMENTAL	ONTOLOGY	MODULES	FORMALISING	CONCEPT	DEFINITION	OF	
ATM	DATA	

	

	

		

	

	

	

©	2016–	BEST	Consortium		
All	rights	reserved.	Licensed	to	the	SESAR	Joint	Undertaking	under	conditions.	

21	
	

	
	

Founding Members

how	we	transform	from	a	UML	construct	to	an	OWL	construct.	Table	3	below	provides	an	overview	
of	 the	 transformations	performed	and	a	more	detailed	explanation	of	 each	 transformation	and	 its	
resulting	OWL	entity	is	provided	in	the	subsequent	parts	of	this	chapter.	The	XSLT	scripts	used	in	the	
transformation	are	available	from:	http://project-best.eu/downloads/ontologies/xslt/xslt.zip	

Table	3.	Overview	of	transformations	between	UML	and	OWL	

UML	Construct	 OWL	Construct	

UML	Class	 OWL	Class	

UML	Generalization	 OWL	SubClassOf	

UML	Boolean	attribute	 OWL	Class	

UML	Attribute	with	complex	data	type	 OWL	Object	Property	

UML	Association	 OWL	Object	Property	

UML	Aggregation	(AIRM	only)	 OWL	Object	Property	

UML	Composition	(AIXM	and	IWXXM)	 OWL	Object	Property	

UML	Attribute	with	simple	data	type	 OWL	Data	Property	

UML	Code	List	 OWL	Class	

UML	Code	List	values	 OWL	Individuals	

	

	
	
OWL	Classes	

• A	UML	Class	is	transformed	to	an	OWL	Class	

• The	 name	 of	 the	 OWL	 Class	 is	 extracted	 from	 element/@name	 (7)	 if	 element/@xmi-type=”uml:Class”	 (6)	 or	 element/@xmi-
type=”uml:Package”.	The	reason	for	also	transforming	the	UML	packages	to	OWL	Class	is	to	maintain	the	order	of	elements	in	the	UML	
model	also	in	the	resulting	OWL	ontology.	This	makes	navigation	in	the	ontology	easier	as	the	packages	act	as	placeholders	for	content	
relevant	 for	 a	 particular	 thematic.	 OWL	 Classes	 representing	 UML	 Packages	 are	 underscored,	 so	 for	 example	 the	
AerodromeInfrastructure	UML	Package	is	represented	as	_AerodromeInfrastructure_	in	the	OWL	Ontology	to	distinguish	it	from	regular	
OWL	Classes.	

• subClassOf	 statements	 are	 created	 if	 there	 is	 a	 match	 between	 the	 value	 of	 element/@name	 (7)	 and	 the	 value	 of	
connector/source/model/@name	 (26),	 and	 it	 the	 properties/@ea_type	 (36)	 is	 ‘Generalization’.	 If	 so	 the	 value	 in	 any	
target/model/@name	(31)	is	included	as	(super)	classes	in	the	subClassOf	statements.	

	

UML	Representation	 OWL	Representation	

	

	

	
	 	

D1.1	EXPERIMENTAL	ONTOLOGY	MODULES	FORMALISING	CONCEPT	DEFINITION	OF	
ATM	DATA	

	

	

		

	

	

	

©	2016–	BEST	Consortium		
All	rights	reserved.	Licensed	to	the	SESAR	Joint	Undertaking	under	conditions.	

23	
	

	

	

Founding Members

Boolean	attributes	
• UML	Boolean	attributes	are	transformed	to	OWL	Classes	and	are	represented	as	sub-classes	of	the	class	they	belong	to	in	UML.	

• Boolean	attributes	are	identified	by	checking	if	attribute/properties/@type=”Boolean”	(20).	

• The	attribute	name	is	extracted	from	attribute/@name	(16)	

• The	OWL	Class	name	is	defined	by	a	combination	of	[OWL	class	representing	the	UML	class	the	attribute	belongs	to]	–	[attribute	name]		
	

UML	Representation	 OWL	Representation	

	

	

	
	 	

EDITION	[01.03.00]	

	

24	
	

©	2016–	BEST	Consortium		
All	rights	reserved.	Licensed	to	the	SESAR	Joint	Undertaking	under	conditions	

	

	

	

Founding Members

Associations	
• UML	Associations	are	represented	as	OWL	Object	Properties	

• The	 domain	 of	 the	 OWL	 Object	 Property	 is	 extracted	 from	 connector/source/model/@name	 (26)	 and	 the	 range	 class	 from	
connector/target/model/@name	(31)	

• The	association	name	is	extracted	from	connector/target/role/@name	(34)	

• The	subPropertyOf	statement	ensures	that	this	object	property	is	grouped	as	a	subProperty	(along	with	other	object	properties	having	
Runway	as	domain	class)	under	the	main	Runway_OP_		object	property.		

• The	naming	convention	used	for	the	OWL	Object	Property	is	[Domain	class	name]	–	[association	name]	
	

	

UML	Representation	 OWL	Representation	

	
	

	
	
	
	 	

D1.1	EXPERIMENTAL	ONTOLOGY	MODULES	FORMALISING	CONCEPT	DEFINITION	OF	
ATM	DATA	

	

	

		

	

	

	

©	2016–	BEST	Consortium		
All	rights	reserved.	Licensed	to	the	SESAR	Joint	Undertaking	under	conditions.	

25	
	

	

	

Founding Members

Attributes	with	complex	data	types	
• Attributes	with	complex	data	types	are	transformed	to	OWL	Object	Properties	

• An	assumption	made	by	the	transformation	script	is	that	in	AIRM	all	complex	data	types	ends	with	“...Type”	

• The	attribute	name	is	extracted	from	attributes/attribute/@name	(16)	

• The	domain	class	is	extracted	from	element/@name	(7)	and	the	range	class	from	attributes/attribute/properties/@type	(20)	

• The	naming	convention	used	is	[Domain	class	name]	–	[attribute	name]	
	

UML	Representation	 OWL	Representation	

	

	

	
	 	

EDITION	[01.03.00]	

	

26	
	

©	2016–	BEST	Consortium		
All	rights	reserved.	Licensed	to	the	SESAR	Joint	Undertaking	under	conditions	

	

	

	

Founding Members

Aggregation	relationships	
• UML	Aggregation	is	transformed	to	an	OWL	Object	Property	

• An	aggregation	relationship	is	identified	by	connector/source/type/@aggregation=”shared”	(28)	

• The	aggregation	name	is	retrieved	from	connector/target/role/@name	(34)	

• The	 domain	 class	 is	 extracted	 from	 connector/source/model/@name	 (26)	 and	 the	 range	 class	 from	 connector/target/model/@name	
(31)	

	

	

UML	Representation	 OWL	Representation	

	

	
	
	 	

D1.1	EXPERIMENTAL	ONTOLOGY	MODULES	FORMALISING	CONCEPT	DEFINITION	OF	
ATM	DATA	

	

	

		

	

	

	

©	2016–	BEST	Consortium		
All	rights	reserved.	Licensed	to	the	SESAR	Joint	Undertaking	under	conditions.	

27	
	

	

	

Founding Members

Composition	relationships	
AIXM	 and	 IWXMM	 do	 not	 use	 aggregation	 relationships,	 but	 composition	 relationships.	 This	 is	 considered	 a	 stronger	 composition	 than	
aggregation	 (which	 is	 used	 in	 AIRM).	 However,	 as	 the	 rationale	 for	 using	 composition	 rather	 than	 aggregation	 is	 to	 ensure	 that	 the	
transformation	 from	 UML	 to	 XML	 schemas	 is	 performed	 unambiguously2	 according	 to	 ISO	 19118	 rules,	 and	 not	 for	 expressing	 life-cycle	
dependency	between	classes,	we	have	transformed	such	relationships	to	normal	OWL	object	properties.	

	

	

	

																																																													

	

2	ISO	19118	defines	encoding	rules	when	transforming	from	UML	to	XML	Schemas.	Here,	a	regular	association	is	transformed	to	an	
xlink,	a	composition	association	is	transformed	to	an	inline	element,	while	an	aggregation	association	can	become	either	one.		

EDITION	[01.03.00]	

	

28	
	

©	2016–	BEST	Consortium		
All	rights	reserved.	Licensed	to	the	SESAR	Joint	Undertaking	under	conditions	

	

	

	

Founding Members

	

	
Attributes	with	simple	data	types	

• UML	Attributes	with	simple	data	types	are	transformed	to	OWL	Data	Properties	

• The	attribute	name	is	extracted	from	attributes/attribute/@name	(16)	

• The	 domain	 class	 is	 extracted	 from	 element/@name	 (7).	 For	 the	 range	 we	 have	 converted	 all	 occurrences	 of	 CharacterString	 to	
xsd:string.	

	

	

UML	Representation	 OWL	Representation	

	

	

	
	 	

D1.1	EXPERIMENTAL	ONTOLOGY	MODULES	FORMALISING	CONCEPT	DEFINITION	OF	
ATM	DATA	

	

	

		

	

	

	

©	2016–	BEST	Consortium		
All	rights	reserved.	Licensed	to	the	SESAR	Joint	Undertaking	under	conditions.	

29	
	

	

	

Founding Members

Code	lists	and	their	values	
• UML	Code	lists	are	represented	as	OWL	Classes	while	their	values	are	represented	as	OWLNamedInvididuals3	

• The	name	of	the	code	list	is	extracted	from	element/@name	(7)	and	element/properties/@stereotype=”CodeList”		

• The	code	list	value	is	retrieved	from	attributes/attribute/@name	(16)	

• The	name	of	the	OWL	Class	is	defined	by	[Code	list	name]	–	[Code	list	value]				
	

UML	Representation	 OWL	Representation	

	
	

	

																																																													

	

3	 Alternatively,	 the	 code	 lists	 could	be	 represented	 as	 Enumerations	 expressed	 in	OWL,	 capturing	 that	 they	define	 a	 fixed	 set	 of	
values,	or	as	a	datatype	with	an	enumeration	of	values.		

Data	types	and	code	lists	
Data	type	and	code	lists	are	represented	differently	in	AIXM	and	IWXXM	and	AIRM,	and	this	must	be	
reflected	 by	 the	 transformation	 rules.	 The	 data	 type	 construction	 in	 AIXM	 consists	 of	 a	 two-step	
creation	procedure,	as	illustrated	in	Figure	8.	When	these	models	are	transformed	to	XSD	there	is	as	
a	first	step	created	a	simple	type	that	grounds	the	code	list/data	type	to	its	simple	data	type	(in	this	
example	string	and	date)	and	as	a	second	step	a	complex	type	is	created	that	defines	the	nilReason	
attribute.	A	similar	convention	 is	applied	for	some	of	the	data	types	 in	 IWXXM.	So	for	all	code	 lists	
there	 is	 also	 a	 corresponding	data	 type	 class	 “nilReason”	attribute	 for	 expressing	 reasons	why	 the	
attribute	 referencing	 the	 code	 list	 is	 empty.	 The	 reasons	 for	 “nil”	 are	 defined	 as	 values	 in	 an	
enumeration	called	“NilReasonEnumeration”.		
	

	
Figure	8.	Modelling	of	code	lists	and	data	types	in	AIXM.	To	the	left	how	a	code	list	is	first	grounded	to	a	simple	XSD	type	

(string)	and	as	a	second	step	the	

We	have	simplified	this	for	the	data	properties	in	the	OWL	ontology	and	have	traced	each	complex	
data	 type	back	 to	 its	 simple	data	 type.	 So	 for	example	DateType	 is	 represented	by	xsd:date	 in	 the	
OWL	ontology.	The	code	lists	employed	in	AIXM	remain	intact	in	the	ontology	and	are	processed	as	
described	in	section	3.2.2.	Code	lists	in	IWXXM	are	not	populated	with	values	in	the	UML	model,	only	
notes	suggesting	example	values	are	provided,	so	an	automated	transformation	from	UML	to	OWL	
was	not	possible	for	these.	An	example	of	this	is	shown	in	Figure	9.	

	

D1.1	EXPERIMENTAL	ONTOLOGY	MODULES	FORMALISING	CONCEPT	DEFINITION	OF	
ATM	DATA	

	

	

		

	

	

	

©	2016–	BEST	Consortium		
All	rights	reserved.	Licensed	to	the	SESAR	Joint	Undertaking	under	conditions.	

31	
	

	

	

Founding Members

	

Figure	9.	Code	list	values	provided	as	examples	in	notes	in	the	IWXXM	UML	model	

XOR	Relationships	
XOR	 relationships,	where	 the	 “deciding”	 class	 is	 stereotyped	with	 <<choice>>,	 signify	 that	 at	 least	
one	but	also	maximum	one	of	the	associated	classes	apply.		

	

	
Figure	10.	Use	of	pattern	constraints	to	define	XOR	(choice)	

These	 structures	 were	 managed	 in	 the	 ontology	 editor	 after	 transformation	 from	 XMI	 and	 were	
implemented	 as	 one	 functional	 object	 property	 <classname>-CHOICE	 with	 a	 set	 of	 sub-properties	
(one	sub-property	per	possible	choice)	and	specified	with	the	class	that	it	must	have	at	least	one	of	
these	sub-properties.	So	using	the	UML	model	depicted	in	Figure	10	as	example,	we	have	defined	the	
following	OWL	constructs	in	the	Protégé	OWL	editor	to	express	XOR:			

	
	

EDITION	[01.03.00]	
	

32	
	

©	2016–	BEST	Consortium		
All	rights	reserved.	Licensed	to	the	SESAR	Joint	Undertaking	under	conditions	

	

	

	

Founding Members

ObjectProperty: HoldingPatternLength-CHOICE
 Characteristics: Functional
 Domain: HoldingPatternLength
 Range: HoldingPatternDistance or HoldingPatternDuration or SegmentPoint

ObjectProperty: HoldingPatternLength-endDistance
 SubPropertyOf:
 HoldingPatternLength-CHOICE
 Range:
 HoldingPatternDistance

ObjectProperty: HoldingPatternLength-endPoint
 SubPropertyOf:
 HoldingPatternLength-CHOICE
 Range:
 SegmentPoint

ObjectProperty: HoldingPatternLength-endTime
 SubPropertyOf:
 HoldingPatternLength-CHOICE
 Range:
 HoldingPatternDuration

Class: HoldingPatternLength
 SubClassOf:
 (HoldingPatternLength-endDistance
 some owl:Thing) or
 (HoldingPatternLength-endPoint
 some owl:Thing) or
 (HoldingPatternLength-endTime some
 owl:Thing)

	

	

Association	classes	
Association	classes	are	introduced	when	additional	information	about	a	relationship	is	required	and	
are	modelled	as	shown	in	Figure	11.		
	

	
Figure	11.	Association	classes	in	AIXM	

D1.1	EXPERIMENTAL	ONTOLOGY	MODULES	FORMALISING	CONCEPT	DEFINITION	OF	
ATM	DATA	

	

	

		

	

	

	

©	2016–	BEST	Consortium		
All	rights	reserved.	Licensed	to	the	SESAR	Joint	Undertaking	under	conditions.	

33	
	

	

	

Founding Members

Here	 we	 implemented	 only	 one	 OWL	 class	 (AuthorityForNavaidEquipment)	 representing	
both	the	association	and	the	association	class	and	an	object	property	per	association	end.		

Datatype: CodeAuthorityRoleType

Class: AuthorityForNavaidEquipment

Class: NavaidEquipment

Class: OrganisationAuthority

ObjectProperty: AuthorityForNavaidEquipment-navaidEquipment
 Characteristics: Functional
 Domain: AuthorityForNavaidEquipment
 Range: NavaidEquipment

ObjectProperty: AuthorityForNavaidEquipment-authority
 Characteristics: Functional
 Domain: AuthorityForNavaidEquipment
 Range: OrganisationAuthority

DataProperty: AuthorityForNavaidEquipment-type
 Characteristics: Functional
 Domain: AuthorityForNavaidEquipment
 Range: CodeAuthorityRoleType	

	

Additionally,	we	defined	that	the	association-ends	are	mandatory	properties:	

Class: AuthorityForNavaidEquipment
 SubClassOf:
 AuthorityForNavaidEquipment-NavaidEquipment some NavaidEquipment,
 AuthorityForNavaidEquipment-authority some OrganisationAuthority

	

And	that	the	association	ends	together	form	a	compound	key	for	the	association	class	(i.e.,	
two	links	with	the	same	source	and	target	are	one	and	the	same	link).	

	
Class: AuthorityForNavaidEquipment
 HasKey:
 AuthorityForNavaidEquipment-NavaidEquipment,
 AuthorityForNavaidEquipment-authority

	

EDITION	[01.03.00]	
	

34	
	

©	2016–	BEST	Consortium		
All	rights	reserved.	Licensed	to	the	SESAR	Joint	Undertaking	under	conditions	

	

	

	

Founding Members

4 The	BEST	Ontology	Infrastructure	
The	monolithic	ontology	and	the	ontology	modules	can	be	downloaded	as	a	zip	file	from:	
http://project-best.eu/downloads/ontologies/ontologies.zip	

4.1 Presentation	of	the	Monolithic	Ontology	
In	total	the	AIRM	ontology	consists	of	1177	classes,	3272	object	properties,	1972	data	properties	and	
3727	individuals.		

	

4.1.1 OWL	Classes	
Figure	12	shows	the	overall	class	structure	of	the	AIRM	OWL	Ontology.	One	of	our	aims	has	been	to	
mimic	 the	structure	of	 the	AIRM	UML	model	 to	 the	extent	 feasible,	and	the	OWL	classes	 including	
underscores	 represent	 the	 package	 hierarchy	 in	 UML,	 while	 classes	 not	 underscored	 represent	
“regular”	classes.	This	convention	keeps	the	transformed	classes	in	the	intended	order	thus	makes	it	
easier	to	navigate	in	the	resulting	ontology	using	an	editor	such	as	Protegé	[4]	for	instance.	

	
Figure	12.	Overall	class	structure	of	the	AIRM	Ontology	

There	are	four	types	of	OWL	classes	in	the	AIRM	Ontology:	

• Classes	representing	UML	package	(as	described	above).		
• Classes	transformed	from	UML	classes.	See	Figure	13.	
• Classes	transformed	from	Boolean	attributes	in	UML.	These	are	represented	as	sub-classes	of	

the	class	they	belong	to	as	attributes	in	UML.	See	Figure	14.	
• Classes	transformed	from	code	lists	in	UML.	See	Figure	15.	

	

	

D1.1	EXPERIMENTAL	ONTOLOGY	MODULES	FORMALISING	CONCEPT	DEFINITION	OF	
ATM	DATA	

	

	

		

	

	

	

©	2016–	BEST	Consortium		
All	rights	reserved.	Licensed	to	the	SESAR	Joint	Undertaking	under	conditions.	

35	
	

	

	

Founding Members

	

Figure	13.	OWL	classes	representing	the	AIRM	Aircraft	
subject	field	

	

Figure	14.	Classes	representing	Boolean	attributes	

	

Figure	15.	Classes	representing	code	lists.	As	in	the	
AIRM	UML	model	there	is	a	code	list	package	for	every	
subject	field	

	

	

4.1.2 Object	Properties	
As	with	the	OWL	classes,	there	are	different	types	of	object	properties	generated	from	UML.		

• Regular	UML	associations,	see	Figure	16.	

• Aggregation	associations,	see	Figure	17.	

• Attributes	with	complex	data	types,	see	Figure	18.	
	

EDITION	[01.03.00]	
	

36	
	

©	2016–	BEST	Consortium		
All	rights	reserved.	Licensed	to	the	SESAR	Joint	Undertaking	under	conditions	

	

	

	

Founding Members

	
Figure	 16.	 A	 regular	 UML	 association	 is	 transformed	 to	 an	 OWL	 object	 property	 (with	 domain	 Runway	 and	 range	
Aerodrome)	

	

	

Figure	 17.	 A	 UML	 aggregation	 relationship	 is	 transformed	 to	 an	 OWL	Object	 Property	 (with	 domain	 Runway	 and	 range	
SurfaceCharacteristics)	

	

Figure	18.	A	UML	Complex	data	type	is	transformed	to	an	OWL	Object	Property.	The	domain	class	 is	the	class	holding	the	
attribute	referring	to	the	complex	data	type	and	the	range	is	the	class	transformed	from	the	complex	data	type	class	in	UML	

	

4.1.3 Data	Properties	
UML	attributes	with	simple	data	types	are	transformed	to	OWL	data	properties.		

	

	
Figure	19.	A	UML	simple	attribute	 is	 transformed	 to	an	OWL	Data	Property.	The	 range	 in	 this	 case	 is	 string	and	since	all	
attributes	in	AIRM	have	cardinality	0..1	this	becomes	a	functional	property	

4.1.4 Individuals	
OWL	Individuals	are	used	to	values	from	the	code	lists	 in	AIRM.	These	are	prefixed	by	the	name	of	
the	code	list	to	support	navigation.		

D1.1	EXPERIMENTAL	ONTOLOGY	MODULES	FORMALISING	CONCEPT	DEFINITION	OF	
ATM	DATA	

	

	

		

	

	

	

©	2016–	BEST	Consortium		
All	rights	reserved.	Licensed	to	the	SESAR	Joint	Undertaking	under	conditions.	

37	
	

	

	

Founding Members

	
Figure	20.	UML	code	list	values	are	transformed	to	OWL	individuals.	The	code	list	values	are	prefixed	with	the	name	of	the	
code	list	they	belong	to	and	have	the	code	list	as	type	

		

4.2 Presentation	of	the	ontology	modules	
This	 section	 lists	 the	 ontology	 modules	 extracted	 from	 the	 AIRM	monolithic	 ontology	 along	 with	
some	statistics	to	get	a	sense	of	their	size	and	complexity.		

4.2.1 AIRM	Modules	
The	Aircraft	ontology	module	consists	of	93	classes,	84	object	properties,	33	data	properties	and	182	
individuals.		

	

	
Figure	21.	OWL	representation	of	the	Aircraft	class	along	with	object	properties	related	to	other	OWL	classes	

	

The	BaseInfrastructure	 ontology	module	 consists	 of	 357	 classes,	 463	 object	 properties,	 133	 data	
properties	and	1574	individuals.		

	
Figure	22.	OWL	representation	of	the	BaseInfrastructure	ontology	module	and	its	sub	classes	

	

The	Common	ontology	module	consists	of	78	classes,	44	object	properties,	19	data	properties	and	
396	individuals.		

EDITION	[01.03.00]	
	

38	
	

©	2016–	BEST	Consortium		
All	rights	reserved.	Licensed	to	the	SESAR	Joint	Undertaking	under	conditions	

	

	

	

Founding Members

	
Figure	23.	Example	showing	the	VerticalStructure	OWL	Class	from	the	Commons	OWL	ontology	module	

	

The	Stakeholders	ontology	module	consists	of	148	classes,	131	object	properties,	40	data	properties	
and	316	individuals.		

	
Figure	24.	Example	showing	the	AirportGroundService	OWL	Class	as	a	concept	in	the	Stakeholders	ontology	module	

	

The	Meteorology	ontology	module	 consists	of	74	classes,	69	object	properties,	15	data	properties	
and	97	individuals.		

	
Figure	25.	Example	showing	the	WeatherPhenomenon	OWL	Class	as	a	concept	in	the	Meteorology	ontology	module	

	

4.2.2 AIXM	Modules	
The	 AirportHeliport	 ontology	 module	 consists	 of	 196	 classes,	 312	 object	 properties,	 133	 data	
properties	and	569	individuals.		

D1.1	EXPERIMENTAL	ONTOLOGY	MODULES	FORMALISING	CONCEPT	DEFINITION	OF	
ATM	DATA	

	

	

		

	

	

	

©	2016–	BEST	Consortium		
All	rights	reserved.	Licensed	to	the	SESAR	Joint	Undertaking	under	conditions.	

39	
	

	

	

Founding Members

	

	
Figure	26.	OWL	representation	of	the	AirportHeliport	ontology	module	from	AIXM	

	
The	Obstacle	ontology	module	 consists	of	24	classes,	35	object	properties,	10	data	properties	and	
132	individuals.		

	
Figure	27.	OWL	representation	of	the	Obstacle	ontology	module	from	AIXM	

	
The	Organisation	ontology	module	consists	of	15	classes,	22	object	properties,	8	data	properties	and	
23	individuals.		

	
Figure	28.	OWL	representation	of	the	Organisation	ontology	module	from	AIXM	

	
The	Geometry	ontology	module	consists	of	11	classes,	8	object	properties,	19	data	properties	and	4	
individuals.		

EDITION	[01.03.00]	
	

40	
	

©	2016–	BEST	Consortium		
All	rights	reserved.	Licensed	to	the	SESAR	Joint	Undertaking	under	conditions	

	

	

	

Founding Members

	
Figure	29.	OWL	representation	of	the	Geometry	ontology	module	from	AIXM	

	
The	Shared	ontology	module	consists	of	33	classes,	39	object	properties,	36	data	properties	and	103	
individuals.		
	
From	 the	 Shared	UML	package	 in	 AIXM	we	have	 extracted	 a	 single	module	 for	 the	 following	 sub-
packages:	

• Address	

• Light	Element	

• Meteorology	

• Schedules	

	
Figure	30.	OWL	representation	of	the	Shared	ontology	module	from	AIXM	

	

4.2.3 IWXXM	Modules	
The	IWXXM	modules	imports	the	external	W3C	Time	ontology	for	describing	temporal	aspects.	The	
W3C	Time	ontology	is	using	the	following	namespace:	http://www.w3.org/2006/time#.
	
The	METAR	ontology	module	consists	of	56	classes,	70	object	properties,	53	data	properties	and	25	
individuals.		

D1.1	EXPERIMENTAL	ONTOLOGY	MODULES	FORMALISING	CONCEPT	DEFINITION	OF	
ATM	DATA	

	

	

		

	

	

	

©	2016–	BEST	Consortium		
All	rights	reserved.	Licensed	to	the	SESAR	Joint	Undertaking	under	conditions.	

41	
	

	

	

Founding Members

	
Figure	31.	Example	showing	the	MeteorologicalObservationRecord	OWL	class	in	the	METAR	ontology	module	

	
The	 TAF	 ontology	 module	 consist	 of	 38	 classes,	 56	 object	 properties,	 32	 data	 properties	 and	 28	
individuals.	This	ontology	imports	the	W3C	time	ontology	for	expressing	temporal	aspects.		
	

	
Figure	32.	Example	showing	the	MeteorologicalAerodromeForecastRecord	OWL	class	from	the	TAF	ontology	module	

	

The	Common	ontology	module	 consists	of	10	classes,	2	object	properties,	0	data	properties	and	0	
individuals.		

EDITION	[01.03.00]	
	

42	
	

©	2016–	BEST	Consortium		
All	rights	reserved.	Licensed	to	the	SESAR	Joint	Undertaking	under	conditions	

	

	

	

Founding Members

	

Figure	33.	The	full	Common	ontology	module		

	

4.3 Validation	of	the	ontology	infrastructure	
Due	to	the	sheer	size	of	the	ontologies,	a	proper	validation	of	the	BEST	ontology	infrastructure	is	a	
challenge,	and	needs	 to	be	performed	 in	 several	 iterations.	The	validation	will	hence	 take	place	 in	
two	 overall	 rounds.	 The	 first	 round	 of	 validation	 has	 been	 performed	 during	 and	 after	 the	
development	of	the	ontologies.	Here,	both	the	monolithic	ontology	and	the	ontology	modules	have	
been	 validated	using	 the	 reasoning	 facilities	 in	Protégé	and	by	manually	 comparing	 the	ontologies	
against	the	UML	models	they	are	sourced	from,	as	well	as	XML	schemas	and	instances	in	the	case	of	
the	 AIXM	 and	 IWXXM	 modules.	 The	 Protégé	 reasoner	 can	 detect	 logical	 inconsistencies	 in	 the	
ontologies,	 for	example	that	the	model	 is	constructed	 in	a	 fashion	that	prevents	them	from	having	
individuals	associated	to	them.	In	the	second	validation	round,	the	ontologies	will	undergo	validation	
when	they	are	being	employed	in	the	technical	implementation	in	work	packages	1	(development	of	
the	AIRM	Compliance	Validator)	and	3	(development	of	a	prototype	SWIM-enabled	application),	and	
a	 desktop	 validation	 will	 take	 place	 in	 work	 packages	 2	 (techniques	 for	 ontology-based	 data	
description	 and	 discovery;	 and	 techniques	 for	 data	 distribution	 and	 consistency	 management),	 4	
(development	 of	 a	 tutorial	 for	 software	 developers)	 and	 5	 (producing	 guidelines	 for	 scalability	 of	
semantic	technologies).	Lessons	learned	from	the	validation	activity	and	the	final	set	of	ontologies	in	
the	 ontology	 infrastructure	 will	 be	 summarised	 in	 deliverable	 D5.2,	 “Ontology	 Modularisation	
Guidelines	for	SWIM”	close	to	the	end	of	the	project.		
	

D1.1	EXPERIMENTAL	ONTOLOGY	MODULES	FORMALISING	CONCEPT	DEFINITION	OF	
ATM	DATA	

	

	

		

	

	

	

©	2016–	BEST	Consortium		
All	rights	reserved.	Licensed	to	the	SESAR	Joint	Undertaking	under	conditions.	

43	
	

	

	

Founding Members

	
Figure	34.	Validation	process	of	BEST	ontology	infrastructure	

	
	

Ontology
Modularisation

Guidelines
(WP45)

(Re8) development
of ontologies

(WP41)

Validation during4
development

(WP1)

Validation from4
implementation

(WP14&43)

Desktop4validation
(WP2,444&45)

Validated ontology infrastructure

Validation round 1Validation round 2

EDITION	[01.03.00]	
	

44	
	

©	2016–	BEST	Consortium		
All	rights	reserved.	Licensed	to	the	SESAR	Joint	Undertaking	under	conditions	

	

	

	

Founding Members

5 Conclusions	and	future	work	
This	 report	 has	 described	 the	 ontology	 infrastructure	 developed	 as	 a	 part	 of	 task	 1.1	 in	 the	 BEST	
project.	The	ontology	infrastructure	consists	of	a	monolithic	ontology	automatically	generated	from	
the	 ATM	 Information	 Reference	Model	 (AIRM),	 and	 a	 set	 of	 ontology	modules	 semi-automatically	
developed	 from	 the	 ATM	 exchange	models	 Aeronautical	 Information	 Exchange	Model	 (AIXM)	 and	
ICAO	Meteorological	Information	Exchange	Model	(IWXXM).	This	ontology	infrastructure	will	be	used	
as	a	basis	for	development	of	software	applications	in	other	technical	work	packages	in	the	project	as	
well	 as	 for	 formulating	 guidelines	 on	 how	 semantic	 technologies	 can	 be	 applied	 in	 a	 SWIM	
environment.	 The	 automatic	 transformation	 from	 UML	 models	 to	 an	 OWL	 representation	 has	
resulted	in	ontologies	that	primarily	maintain	the	semantics	expressed	in	the	source	UML	models.	As	
such	 the	 resulting	 ontologies	 should	 be	 considered	 lightweight	 ontologies	 that	 do	 not	 incorporate	
more	 advanced	 OWL	 constructs	 such	 as	 complex	 classes	 or	 more	 advanced	 property	 restrictions.	
During	the	implementation	of	the	ontologies	in	other	work	packages,	we	expect	that	the	ontologies	
will	be	semantically	enriched	to	facilitate	expression	of	more	complex	knowledge.	The	validation	of	
the	 ontologies	 will	 be	 performed	 iteratively,	 which	 is	 challenging	 due	 to	 their	 size.	 During	 the	
development	 reported	 in	 this	 deliverable,	 the	 ontologies	 have	 been	 validated	 using	 consistency	
checking	 with	 a	 reasoner,	 by	 manually	 comparing	 the	 resulting	 ontologies	 against	 their	 baseline	
models	 in	 UML	 as	 well	 as	 XML	 Schemas	 and	 instances	 for	 the	 ontologies	 produced	 from	 the	
exchange	 models	 (AIXM	 and	 IWXXM).	 Another	 round	 of	 validation	 will	 be	 performed	 when	 the	
ontologies	 are	 applied	 in	 the	 project´s	 application	 development	 and	 when	 guidelines	 for	 using	
semantic	technologies	in	a	SWIM	environment	are	produced.	The	final	set	of	validated	ontologies	will	
be	 delivered	 along	 with	 guidelines	 for	 modularisation	 close	 to	 the	 end	 of	 the	 project	 when	
deliverable	D5.2	(Ontology	Modularisation	Guidelines	for	SWIM)	is	finalised.		

D1.1	EXPERIMENTAL	ONTOLOGY	MODULES	FORMALISING	CONCEPT	DEFINITION	OF	
ATM	DATA	

	

	

		

	

	

	

©	2016–	BEST	Consortium		
All	rights	reserved.	Licensed	to	the	SESAR	Joint	Undertaking	under	conditions.	

45	
	

	

	

Founding Members

6 References	
	
[1]	 M.	Ehrig,	S.	Staab,	and	Y.	Sure,	“Bootstrapping	ontology	alignment	methods	with	APFEL,”	Lect.	

Notes	Comput.	Sci.	(including	Subser.	Lect.	Notes	Artif.	Intell.	Lect.	Notes	Bioinformatics),	vol.	
3729	LNCS,	pp.	186–200,	2005.	

[2]	 P.	Hitzler,	M.	Krotzsch,	B.	Parsia,	P.	F.	Patel-Schneider,	and	S.	Rudolph,	“OWL	2	Web	Ontology	
Language	Primer	 (Second	Edition),”	2012.	 [Online].	Available:	https://www.w3.org/TR/owl2-
primer/.	[Accessed:	12-May-2017].	

[3]	 I.	 Kovacic,	 D.	 Steiner,	 C.	 Schuetz,	 B.	 Neumayr,	 F.	 Burgstaller,	 M.	 Schrefl,	 and	 S.	 Wilson,	
“Ontology-based	Data	Description	and	Discovery	in	a	SWIM	Environment,”	 in	Proceedings	of	
the	Integrated	Communications	Navigation	and	Surveillance	Conference,	2017.	

[4]	 M.	 A.	 Musen,	 “Protégé	 Ontology	 Editor,”	 2015.	 [Online].	 Available:	
http://protege.stanford.edu/.	

[5]	 C.	Schuetz,	B.	Neumayr,	and	M.	Schrefl,	“D2.1	Techniques	for	ontology-based	data	description	
and	discovery	in	a	decentralized	SWIM	knowledge	base,”	2017.	

[6]	 M.	Perry	 and	 J.	Herring,	 “GeoSPARQL	 -	A	Geographic	Query	 Language	 for	RDF	Data,”	 2012.	
[Online].	Available:	http://www.opengeospatial.org/standards/geosparql.	[Accessed:	28-May-
2017].	

[7]	 W3C,	“RDF	Schema	1.1	–	W3C	Recommendation	25	February	2014,”	2014.	[Online].	Available:	
https://www.w3.org/TR/2014/REC-rdf-schema-20140225/.	[Accessed:	28-May-2017].	

[8]	 W3C,	“SPARQL	1.1	Query	Language,”	2013.	.	
[9]	 M.	 Kifer	 and	 G.	 Lausen,	 “F-logic:	 a	 higher-order	 language	 for	 reasoning	 about	 objects,	

inheritance,	and	scheme,”	ACM	SIGMOD	Rec.,	vol.	18,	no.	2,	pp.	134–146,	1989.	
[10]	 S.	Ceri,	G.	Gottlob,	and	L.	Tanca,	“What	you	always	wanted	to	know	about	Datalog	(and	never	

dared	to	ask),”	IEEE	Trans.	Knowl.	Data	Eng.,	vol.	1,	no.	1,	pp.	146–166,	1989.	
[11]	 S.	B.	Abbes,	T.	Meilender,	and	M.	D’Aquin,	“Characterizing	modular	ontologies,”	in	Conference	

on	Formal	Ontologies	in	Information	Systems-FOIS,	2012.	
[12]	 H.	 Stuckenschmidt	 and	 A.	 Schlicht,	 “Structure-Based	 Partitioning	 of	 Large	 Ontologies,”	 in	

Modular	ontologies,	Springer,	2009,	pp.	187–210.	
[13]	 M.	D’Aquin,	“Modularizing	Ontologies,”	in	Ontology	Engineering	in	a	Networked	World,	Berlin,	

Heidelberg:	Springer	Berlin	Heidelberg,	2012,	pp.	213–233.	
[14]	 S.	 Wilson,	 R.	 Suzic,	 and	 S.	 Van	 der	 Stricht,	 “The	 SESAR	 ATM	 information	 reference	 model	

within	 the	 new	 ATM	 system,”	 in	 2014	 Integrated	 Communications,	 Navigation	 and	
Surveillance	Conference	(ICNS)	Conference	Proceedings,	2014.	

[15]	 S.	Wilson,	R.	Suzic,	J.	Pinto,	S.	Keller,	and	G.	Marazzo,	“SESAR	AIRM	Compliance	Framework,”	
Brussels,	2015.	

[16]	 EUROCONTROL	and	FAA,	“AIXM	UML	to	XML	Schema	Mapping,”	2010.	
[17]	 EUROCONTROL,	 “EUROCONTROL	 Specifications	 for	 Aeronautical	 Information	 Exchange,”	

Brussels,	2012.	
[18]	 EUROCONTROL,	“AIXM	5	Temporality	Model,”	Brussels,	2010.	
[19]	 www.fixm.aero,	 “FIXM	 Model	 Development	 Guidelines,”	 2014.	 [Online].	 Available:	

EDITION	[01.03.00]	
	

46	
	

©	2016–	BEST	Consortium		
All	rights	reserved.	Licensed	to	the	SESAR	Joint	Undertaking	under	conditions	

	

	

	

Founding Members

https://www.fixm.aero/documents/FIXM	 Development	 Guidelines_v2.pdf.	 [Accessed:	 16-
May-2017].	

[20]	 Object	Management	Group,	“XML	Metadata	Interchange	v2.5.1,”	2015.	
[21]	 Sparx	 Systems,	 “Enterprise	 Architect	 (Software),”	 2017.	 [Online].	 Available:	

https://www.sparxsystems.eu/enterprisearchitect/newedition/.	[Accessed:	22-Feb-2017].	

[22]	 J.	Clark,	“XSL	Transformations	(XSLT)	Version	1.0,”	1999.	
[23]	 Object	Management	Group,	 “Ontology	Definition	Metamodel	 (ODM)	 v1.1,”	Needham,	OSA,	

2014.	
[24]	 U.	 Sattler,	 T.	 Schneider,	 and	M.	 Zakharyaschev,	 “Which	 Kind	 of	Module	 Should	 I	 Extract?,”	

Descr.	Logics,	2009.	
[25]	 E.	 Jimenez-Ruiz,	 B.	 C.	 Grau,	 U.	 Sattler,	 T.	 Schneider,	 and	 R.	 Berlanga-Llavori,	 “Safe	 and	

Economic	 Re-Use	 of	 Ontologies:	 A	 Logic-Based	 Methodology	 and	 Tool	 Support,”	 in	 ESWC	
2008,	2008.	

[26]	 B.	C.	Grau,	I.	Horrocks,	Y.	Kazakov,	and	U.	Sattler,	“Modular	Reuse	of	Ontologies:	Theory	and	
Practice,”	J.	Artif.	Intell.	Res.,	pp.	272–318,	2008.	

	

D1.1	EXPERIMENTAL	ONTOLOGY	MODULES	FORMALISING	CONCEPT	DEFINITION	OF	
ATM	DATA	

	

	

		

	

	

	

©	2016–	BEST	Consortium		
All	rights	reserved.	Licensed	to	the	SESAR	Joint	Undertaking	under	conditions.	

47	
	

	

	

Founding Members

APPENDIX	A:		OMG	Mapping	Guidelines	

	
	

EDITION	[01.03.00]	
	

48	
	

©	2016–	BEST	Consortium		
All	rights	reserved.	Licensed	to	the	SESAR	Joint	Undertaking	under	conditions	

	

	

	

Founding Members

APPENDIX	B:		Post-processing	of	XMI	
Issues	with	generated	XMI	

• The	SAXON	parser	throws	an	error	since	there	are	two	data	types	declared	for	
“PackagedElement.PackagedElement.OwnedAttribute.upperValue.	This	types	are	
‘uml:LiteralInteger’	and	‘uml:LiteralUnlimitedNatural’	

o Resolved	by	removing	‘uml:LiteralInteger’	
	
Un-needed	elements	
	
• Remove	the	uml:Model	branch	of	the	XMI,	since	this	is	duplicates	of	the	xmi:Extension	
• Remove	the	<diagrams>	elements	since	they	do	not	contain	any	information	relevant	for	the	

transformation	
• Remove	the	top-level	UML	packages	(e.g.	“AIXM_v.5.1.1”)	as	we	do	not	want	that	as	a	part	of	the	

OWL.		
	

Whitespace	removal	

• Typically	for	code	values	there	is	an	extra	whitespace	in	the	end	of	the	code	value	name.	This	is	
not	accepted	by	the	Protégé	OWL	editor.	

• Resolved	by	removing	all	whitespace	in	names	using	the	search-replace	function	in	Oxygen	XML	
Editor.		

	

Data	type	conversion	

• The	HermiT	reasoner,	which	is	used	in	the	ontology	module	extraction	does	not	support	
xsd:duration	as	it	is	not	a	part	of	the	OWL	2	datatype	map.	All	instances	of	xsd:duration	are	
converted	to	xsd:string	for	the	time	being.		

• The	HermiT	reasoner,	which	is	used	in	the	ontology	module	extraction	does	not	support	xsd:date	
as	it	is	not	a	part	of	the	OWL	2	datatype	map.	All	instances	of	xsd:date	are	converted	to	
xsd:string	for	the	time	being.		
	

	

D1.1	EXPERIMENTAL	ONTOLOGY	MODULES	FORMALISING	CONCEPT	DEFINITION	OF	
ATM	DATA	

	

	

		

	

	

	

©	2016–	BEST	Consortium		
All	rights	reserved.	Licensed	to	the	SESAR	Joint	Undertaking	under	conditions.	

49	
	

	

	

Founding Members

The	BEST	consortium:	
SINTEF	

	

Frequentis	AG	

	

Johannes	
Kepler	
Universität	
(JKU)	

Linz	

	

SLOT	
Consulting	

	

EUROCONTROL	 	

	

	

